Yeast AEP3p is an accessory factor in initiation of mitochondrial translation.
نویسندگان
چکیده
Initiation of protein synthesis in mitochondria and chloroplasts normally uses a formylated initiator methionyl-tRNA (fMet-tRNA(f)(Met)). However, mitochondrial protein synthesis in Saccharomyces cerevisiae can initiate with nonformylated Met-tRNA(f)(Met), as demonstrated in yeast mutants in which the nuclear gene encoding mitochondrial methionyl-tRNA formyltransferase (FMT1) has been deleted. The role of formylation of the initiator tRNA is not known, but in vitro formylation increases binding of Met-tRNA(f)(Met) to translation initiation factor 2 (IF2). We hypothesize the existence of an accessory factor that assists mitochondrial IF2 (mIF2) in utilizing unformylated Met-tRNA(f)(Met). This accessory factor might be unnecessary when formylated Met-tRNA(f)(Met) is present but becomes essential when only the unformylated species are available. Using a synthetic petite genetic screen in yeast, we identified a mutation in the AEP3 gene that caused a synthetic respiratory-defective phenotype together with Delta fmt1. The same aep3 mutation also caused a synthetic respiratory defect in cells lacking formylated Met-tRNA(f)(Met) due to loss of the MIS1 gene that encodes the mitochondrial C(1)-tetrahydrofolate synthase. The AEP3 gene encodes a peripheral mitochondrial inner membrane protein that stabilizes mitochondrially encoded ATP6/8 mRNA. Here we show that the AEP3 protein (Aep3p) physically interacts with yeast mIF2 both in vitro and in vivo and promotes the binding of unformylated initiator tRNA to yeast mIF2. We propose that Aep3p functions as an accessory initiation factor in mitochondrial protein synthesis.
منابع مشابه
Aep3p-dependent translation of yeast mitochondrial ATP8
Translation of mitochondrial gene products in Saccharomyces cerevisiae depends on mRNA-specific activators that bind to the 5' untranslated regions and promote translation on mitochondrial ribosomes. Here we find that Aep3p, previously shown to stabilize the bicistronic ATP8-ATP6 mRNA and facilitate initiation of translation from unformylated methionine, also activates specifically translation ...
متن کاملMammalian mitochondrial initiation factor 2 supports yeast mitochondrial translation without formylated initiator tRNA.
Initiation of protein synthesis in mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl-tRNA (fMet-tRNAfMet) in a process involving initiation factor 2 (IF2). However, yeast strains disrupted at the FMT1 locus, encoding mitochondrial methionyl-tRNA formyltransferase, lack detectable fMet-tRNAfMet but exhibit normal mitochondrial function as evidenced by n...
متن کاملTranslation initiation in Saccharomyces cerevisiae mitochondria: functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA-formyltransferase and novel protein Rmd9p.
Rsm28p is a dispensable component of the mitochondrial ribosomal small subunit in Saccharomyces cerevisiae that is not related to known proteins found in bacteria. It was identified as a dominant suppressor of certain mitochondrial mutations that reduced translation of the COX2 mRNA. To explore further the function of Rsm28p, we isolated mutations in other genes that caused a synthetic respirat...
متن کاملAssignment of a yeast protein necessary for mitochondrial transcription initiation.
Yeast mitochondrial DNA contains multiple promoters that are responsible for expression of its genes. The basic yeast mitochondrial promoter consists of a nonanucleotide consensus sequence [5'-ATATAAGTA(+1)-3'] that must be recognized by transcription proteins, including mitochondrial RNA polymerase and any relevant trans-acting factors. Since mitochondrial RNA polymerase alone appeared unable ...
متن کاملMitochondrial translation initiation machinery: Conservation and diversification☆
The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this revie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 49 شماره
صفحات -
تاریخ انتشار 2009